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Abstract

Three-dimensional analysis is performed for a transversely isotropic solid containing a half plane crack subjected to
suddenly applied concentrated point forces acting at a finite distance from the crack edge. The solution of this problem
is treated as the superposition of two simpler problems. One considers the transient wave in an elastic half space
generated by an impact point loading on the surface, the other problem is that which cancels out the surface dis-
placement ahead of the crack edge induced by problem 1. A half space subjected to a distributed dislocation on the
surface is constructed as the fundamental problem and solved by the use of integral transforms, the Wiener—-Hopf
technique and the Cagniard-de Hoop method. An exact expression is derived for the mode I stress-intensity factor as a
function of time and position along the crack edge. Some features of the solution are discussed through numerical
results. © 2001 Elsevier Science Ltd. All rights reserved.

Keywords: Transverse isotropy; Half plane crack; Transient loading; Stress-intensity factor

1. Introduction

With the wide usage of macroscopically anisotropic construction materials such as geomaterials, crys-
tals, and fiber-reinforced composites, great interest has been shown in the dynamic crack problems of
anisotropic elasticity recently. The study of these problems is of particular importance to linear, elastic
fracture mechanics to assess the initiation and growth of a developed macro-crack under dynamic loading
conditions, and to nondestructive evaluation for detecting and characterizing the damaged state of mate-
rials. Elastodynamic analysis of a crack in an infinite transversely isotropic medium has been performed by
Ohyoshi (1973) and Zhang and Gross (1993) for incident SH waves, by Dhawan (1982a,b) for incident P
and SV waves. Diffraction of plane time-harmonic elastic waves has been investigated by Lobanov and
Novichkov (1981) for an antiplane crack in an orthotropic half plane, and by Norris and Achenbach (1984)
for a semi-infinite crack in an infinite transversely isotropic material. Studies for a periodic array of cracks
in transversely isotropic solids have been presented by Zhang (1992) for the incident SH waves, and by
Mandal and Ghosh (1994) for the incident P waves. Transient stress-intensity factors due to impact loading
have been given by Kassir and Bandyopadhyay (1983) and Ang (1987) for an inplane crack in an infinite
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orthotropic or transversely isotropic solid, by Shindo et al. (1986, 1992) for a crack in an orthotropic strip,
by Ang (1988) for an inplane crack in a transversely isotropic layered solid, and by Kuo (1984a,b) for an
interface crack between orthotropic and fully anisotropic half planes. All of the above-mentioned references
discuss two-dimensional crack problems. But perhaps, because of the mathematical complexity, three-
dimensional crack problems of an anisotropic medium under dynamic loading have not yet received much
attention. The interaction of time-harmonic elastic waves with a penny-shaped crack has been analyzed by
Tsai (1982, 1988) who calculated the elastodynamic stress-intensity factors, by Kundu and Bostrom (1991,
1992) who computed the scattered far-field. The three-dimensional analysis of cracks in the layered
transversely isotropic media has been treated by Lin and Keer (1989). The ultrasonic crack detection in
anisotropic materials has been investigated by Mattsson et al. (1997). Closed form solutions for a half plane
crack in a transversely isotropic material due to both impact and moving loads have been obtained by
Xiaohua et al. (1999, 2000).

In the present paper, three-dimensional analysis is performed for a transversely isotropic solid con-
taining a half plane crack subjected to suddenly applied concentrated point forces acting at a finite distance
from the crack edge. Different from those discussed by Xiaohua et al. (1999, 2000), this problem has a
characteristic length in the loading function. Aside from being of importance in the field of dynamic
fracture mechanics (Freund, 1990), its solution is of practical interest for engineering applications since the
model of a half plane crack may be applied to any case for which we are interested in the stress distribution
in a cracked body, with the distance from the loading to the crack edge being small as compared to the
crack edge curvature, while the solution serves as a fundamental one. However, due to the existence of the
characteristic length, the transform methods together with the Wiener—Hopf technique used by Xiaohua
et al. (1999, 2000) cannot be directly applied. Here, an alternative methodology is developed. We treat such
a solution as the superposition of two simpler problems. One considers the transient wave in an elastic half
space generated by an impact point loading on the surface, the other problem is that which cancels out the
surface displacement ahead of the crack edge induced by problem 1. A half space subjected to a distributed
dislocation on the surface is constructed as the fundamental problem and solved by the use of integral
transforms, the Wiener—Hopf technique and the Cagniard-de Hoop method. An exact expression is derived
for the mode I stress intensity factor as a function of time and position along the crack edge. Some features
of the solution are discussed through numerical results.

2. Basic formulas

Consider a transversely isotropic, linear elastic solid containing a half plane crack depicted in Fig. 1. The
solid is initially stress free and at rest. A right-handed rectangular coordinate system is introduced such that
the y-axis coincides with the crack edge, and the half plane crack occupies the area z = 0 and x < 0. At time
t = 0, an opposed pair of point loads suddenly begins to act on the crack faces at a point at a finite distance
[ from the crack edge, resulting in a three-dimensional stress-wave field in the solid.

Let u.(x,y,z,t), u,(x,y,z,t) and u.(x, y, z, t) denote the relevant displacement components in the x, y and z
directions, respectively, then the stresses in the solid can be expressed by the relations

Ou, Ou, Ou,

Oxx = C1 ox +c26_);+c3 oz ) (la)
U, Ou, Ou,
O’WZCZa—)é—FCla—};—FC; %’ (lb)
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Fig. 1. Geometrical configuration of the elastic solid.
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where ¢; (k=1,2,3,4,5) are material constants.

Equations of motion for the problem are
0y = pit;  (i=x,,2),

where p is the material density.

2853

For a transversely isotropic material, it proves convenient to introduce scalar potentials ¢(x,y,z, 1),

W(x,y,z,t) and 0(x,y,z,t), so the displacement components can be represented as

_0p O
”*‘*ax+ay’
_%

”}’_ay_ax’

(3a)

(3b)
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w2 (3¢)
Substitution of the above equations into Egs. (1a)—(1f) and (2) gives after some manipulation

wy +as Y =00 (4a)

a3V2¢+a5V29+a2$=¥, (4b)

alvz(l)—&—asaz—qb—&-ag@— o¢ (4c)

0z2 o2 o’
where V2 = (02/dx?) + (0*/0y*), and the five constants a; =ci/p, a» =c4/p, a3 = (cs+c3)/p, as =

(c1 — ) /2p, as = cs/p.
Due to the symmetry with respect to the plane z = 0, only the region z > 0 need be considered. The
boundary conditions for z = 0 are

0=:(x,2,0,1) = 0_(x,,1) + 0. (x, 3, 1), (5a)

0 (x,,0,1) =0, (5b)

0,.(x,»,0,¢) =0, (5¢)

u:(x,,0,1) = u_(x, ,1), (5d)
for —oo < x,y < 400, t = 0 and

o-(x,y,1) = =Fo(x+ 1)(y)H (t). (6)

In Egs. (5a)—(5d) and (6), Fis the intensity of loads, H(-) is the Heaviside function and J(-) is the Dirac delta
function. The function o (x,y,¢) represents the unknown component of stress a..(x,y,0,¢) on x > 0, and
. (x,y,t) =0 for x < 0. The function u_(x,y,#) represents the unknown component of displacement
u.(x,,0,¢) on the crack faces for x < 0 and u_(x,y,¢) = 0 in the half range x > 0.

The initial conditions are expressed in terms of the potentials as

¢(x,»,2,0) = ¥(x,»,2,0) = 0(x,y,2,0) = 0, (7a)
0p(x,y,2,0)  W(x,y,2,0) 00(x,y,2,0)
ot o ot h ot = 0. (70)

Within the framework of linear elasticity, the solution of the formulated problem can be obtained by
linear superposition of the solutions of two simpler problems. They are as follows:

Problem 1: Solve Eq. (4) with the nonmixed boundary conditions

oL (x,,0,1) = o_(x,y,1), (8a)
0, (x,,0,1) =0, (8b)
a)l,z(x,y,O,t) =0. (8¢c)

Problem 2: Find the solution of Eq. (4) subjected to the mixed boundary conditions
O'Z(X,y,o,l) = U+(X,y7 t), (98')
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G:Ici(x)yvovt) = 07 (9b)
0,1 (x,,0,1) =0, (%)
! (x,,0,0) = ull (x, y, 1) — ud (x,,1). (9d)

Solutions of both problems must also satisfy the initial conditions (7a) and (7b).

One can easily find that problem 1 considers the transient response of an elastic half space due to the
application of an impact point traction at x = —I/, y =z = 0. This problem is usually called Lamb’s
problem, and its solution can be obtained by using integral transforms. For the sake of simplicity, the
detailed calculation is omitted here and may be found in the work by Xiaohua (1999). A similar procedure
can also be found in Eringen and Suhubi (1975) for the case of an isotropic material, the difference being
that the integration contour for the inversion of transforms is modified to include all the branch cuts of the
integrand. The final result for the surface displacement in the z direction takes the following form:

F (> H(t—v)

u(x,9,0,1) = ——— v)do, 10
L(x,»,0,1) 7 ), pzr(rg—zﬁ)”zf() (10)
where
n=a', p=as, (11)
r=1/(x+ 1) 42 (12)
t
Ty = — . 13
’ pr ( )
In addition, when p;/p, < v < 1,
0010
1) = 2 J , (14)
(1 =20 +asP? + a2Q| + (42 + asP) (v® — as/a))(1 — v?)
P:—4(m_“2)2, (15)
aja; — (613 - as)
0- P +a2(a2—a1)+2(a3+a5—az)(a;+a2—3a5)’ (16)
Vaia aslaya, — (az — as)’]
4. /a1a
Ql :%7 (17)

aa; — (613 - as)

PZ
0, = <vzzf>(l+a5P+a§Q)ﬂ2+ [1+402<ZS 1> +a115+a§ }ﬂl 2 - BT, (18)

1

1/2

Lt + aras + a? . a a 2 Lv? + aras + &
B, = K—“ 5) +—12<v2——5>(1—02)] 22T (19)

2 2
2azas araz 2ayas
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1/2

12
Lv* + apas + a? S , as Lv* + apas + a2

= _— — _ 1 - 2 - 3 20

b l( 2aya? + ara’ v a (1-v) 2a,a? ’ (20)
L=d —d—aa. (21)

When v > 1,
7
fi) = W0 17— asfe (22)

(1 = 2%)" 4 asP? + 20 — (402 + asP)\/1® — as/a, Vo> — 1’

4,/a\ax(a, — as) Bs + Ba (23)

0, = 7
a [ala2 — (a3 — as)z} V2 —as/ar + V2 —1
2 1/2 1/2
By={ — <Lv2+aza§+a§> ‘112<vza5>(vzl) 7L1;2+a—zaz+a§ ’ (24)
2aya3 a,az a 2aya;
12 1/2
By = Lo + aras + a% ? _a 2 as (vz B 1) _ Lv* + ayas + a§ (25)
! 2a,a3 aa3 a 2a,a? ’
Thus, we have
ul x7y7t :ul X,y,O,tHx. 26
+ 4

3. Required fundamental solution

As the first step of solving problem 2, a fundamental problem is constructed. The problem can be viewed
as a half-space problem with the material occupying the region z > 0, and is subjected to the following
mixed boundary conditions for z = 0:

oL (x,,0,1) = a (x,,0), (27a)
o1 (x,,0,1) =0, (27b)
O-)ljz(xay707t) = 0) (270)

H(ty — v)H (x)

. 27d
por(y—?)'"” 279

uf(x7y7 07 t) = uE(xLy? t) -

This fundamental problem can be solved by using transform methods and the Wiener—Hopf technique.

Initially, a one-sided Laplace transform over time is applied to the partial differential Eqgs. (4a)—(4c), taking

into account the initial conditions (7a) and (7b). The transformed function is denoted by a superposed hat,
for example,

$(r7,7,5) = / $(r, 2, Dedr, (28)
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where the complex number s has a positive real part. Thereafter, a two-sided Laplace transform is intro-
duced over the y-coordinate. The complex transform parameter is s&, and the transformed function is
denoted by a bar, i.e.

Blx, & z,5) = / $(x,y,2,5)e=7 dy. (29)

Finally, a two-sided Laplace transform is used to suppress the dependence on x. The complex transform
parameter is sy, and the transformed function is denoted as

+00
# ez = [ Bnezsemds (30)
The partial differential Equations (4a)—(4c) are reduced to
dZ *
—ays 15y + as dw =0, (31a)
200 22 d’o
ass* (" + &)¢" — ass’ 150" + ay —— oz =0 (31b)
d2 * dZO*
—as 15" + as dqz tas =0, (31¢)
where
w(n &) =@} - =&, (32)
w8 = —n = &), (33)
w1, 8) = (3 = = &', (34)
Px =a, L (35)
The bounded solutions to Egs. (31a)—-(31c) as z — oo may be written in the form
{b* :Ae—s/llz_’_Be—s/lzz, (363.)
ayd — asi; ay i — asi’
0* _ 1 lA ﬂmz_i_ 1 ZB —r/zz7 36b
a322 61312 ( )
Y' = Ce™, (36¢)
where 4, B, C are arbitrary functions of & and 5, and
2

P AU +&) tatas L0 +E)+ar+as ~ e, (37)

v 261205 251205 a

ay
A3 = 4 [—1ls. 38
3 \/asﬂa (38)

The complex 7 plane is cut along y/p? — & < |Re(y7)| < oo, Im(17) = 0. So that Re(y;) = 0 in the entire cut

n plane for each value of #, and likewise for Re(u,, 15, 41, 42) = 0.
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Now, if we make use of the known integrals (Erdelyi, 1954; Freund, 1990)

*  H(tg—v)
/0 m exp(—st) dt = Ko( pasrv), (39)
/ N Ko(prsrv) exp(—séy)dy = 5 exp[—s(x + 1)4A], (40)

where Ko (pasrv) is the modified Bessel function of the second kind and

2= &) =/ piv? — &, (41)

the Laplace transformation of boundary conditions (27a)—(27d), together with the transformed stresses and
displacements, will lead to

a a
P = as)0 + &)+ 2 i asi) |44 95 s = a7+ )+ 2 o - a5 | B = 2.,
(42a)
2 22 2 2
<a1ﬂl =0 + i1) A+ (alul — ashy + )v2> ¢B —nisC =0, (42b)
a3)v] as/ty
2 22 2 2
<M+zl)m+ (M+zz>n3+a3czo, (42¢)
aszly as/iy
L[ anl — asiy afd — asi; T
— =U.——— —slA). 42d
s ( a3/11 a3/12 B) v i()u+17) CXp( s ) ( )
If A, B, C are eliminated from the above equations, we will obtain
PR(n, &) [ n ]
— U —— exp(—sli)| =2 43
w8 | Ay S =2 “3)
in which
+00 +00 _F
so=s [ [ s exnl—ster ml v, (44)
+00 +o00 _F
=5 [ [ iltrsexn (st poldvar (45)
{[(as —as)’ —aa) (PP + &) + az}uz + Varay
R(n, &) = : (46)

A /alaz(il + )Q)

Eq. (43) is of the type that can be solved by Wiener—Hopf technique. So, we may determine the two
unknown functions X, and U_ with a single equation. The Wiener—Hopf procedure requires that the mixed
functions in Eq. (43) must be factored into the product of sectionally analytic functions. For this purpose,
the function R(n, £) may be written in the form
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R(n, &) = ajaslaiar — (as _a5)2]<:ul + 1) 4n* + 52) + (l_ 2n* — 252)2
T T faa (ar — as)(n + ) ! e e

+ Pl(n* + &) + o) +Q}- (47)

It is found that through appropriate manipulation R(#, £) can be transformed into a form identical to
Eq. (3.27) of the paper by Buchwald (1961), in which it is proved that R(y,¢) = 0 has only two roots
n = ++v/c* — & along the real axis. Here ¢ = ¢!, ¢, is the Rayleigh wave speed for a transversely isotropic
solid.

Now, consider a new function S(5, &) defined by

R(n,
018 = L (48)
then
S(nv f) =5 (1’[, f)Sz(Vl, é)a (49)
2
_ aas 40+ E)pupn + (i_z"’z_zéz) + P+ &) + ] + O 0
Si(n, <) = ar—a) R ; (50)
Caay— (a3 —as)’ gt
Sz("l;é) - 2k\/m ;bl _'_/127 (51)
= Q)" aa — (ay — as)’ , (52)
AL (12— dajaya2)" ) - L} " + [(L2 —dayara?)'? — L] "

The function S (5, £) has no poles or zeros in the complex 5 plane, the only singularities being the branch
points of the functions p, (1, &) and p,(n, &). In the entire cut 5 plane, S; (7, £) is analytic. When || — oo,
Si(n, &) — 1. According to Cauchy’s integral theorem, S;(n, &) can be decomposed into

Si(n, &) = 87 (n, &)Sy (n, &) (53)
1 P2 B (4@2 +P) /p2 _ gz /;2 _p2 ;d;

SE(n, &) = = ! 2 1 ) 54

1 (n,8) =exp { . [71 g - 2;2)2 YP2+0 \/gz — fz(\/gz = ’1) (54)

The functions S; (1, ¢) and S (17, ¢) are analytic and nonzero in the half planes Re(y) > —/p? — & and

Re(n) < \/p} — &, respectively.

With reference to Eq. (49), the function S,(n, &) remains to be split. The singularities of S,(, &) in the
complex 7 plane are the branch points of the functions 4, (y, &), 22(, €), 1y (n, &) and p, (5, €). The functions
Ai(n, &) and Ay (n, &) possess two kinds of branch points. The first kind are the points given by

The substitution of Eq. (37) into Eq. (55) leads to the following branch points:

with
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n=+\/pt— &, n==+\/p}—&, (56)

which are also the branch points of u,(n, &) and p,(n, ¢). The second kind of branch points are where
25(n, &) — A3 (n, &) is zero. Such points will occur in pairs. Between the two points of a given pair, we may
define a branch cut such that 4,(n, &) + Z2(n, £) is continuous across the cut, while 4,(n, &) and 4,(, &) are
each discontinuous. Therefore, these cuts give no contribution to the analytic factorization. So, we obtain
via the use of Cauchy’s integral theorem

$2(n,€) =83 (n,&)S; (n, ), (57)

~dc

1 P2 ~2 2 2 CZ
Szi(m & =exp{ — - / tg—l lﬁs\/sz Pi ﬁé\/Pz ,2] cdag 7 (58)
T Jp Bs\/p3 — & + P/ — pi Ve _52(\/C2 - fzi”)
where
) 1n 12
B = L +a +as 2_~_ﬂ(ﬁ2_ (P2 — &) / _,_m (59)
ST 2612615 [25) > P 2 v 202615 ’
[ I +ar+as\° a 12 Lt +a,+a .
2 5 1,2 2\ 2 2 > 2 5
_ Gre2 _c = T . 60
fo= (Bt ) + 2@ - e - ) - (60)

The functions S, (i, &) and S; (17, ¢) are analytic and nonzero in the half planes Re(iy) > —/p? — € and

Re(n) < y/p} — &, respectively.
Thus, we have

S(n,8) = 8:(n,9)S-(n,¢) (61)
with
Ss(n,&) = 8¢ (n,€)Sy (n, &). (62)

We also have

\/pf—éz—nzz\/\/p%—éern\/\/ﬁ—n (63)
cz—fz—n2:<\/cz—7+n)(\/cz—7—n>- (64)

Let

and

12
<\/p% -8+ 11)
Vet — fzin)Si(mf),

then Eq. (43) becomes

Fj:(’%é) = ( (65)
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pk T - V
S F.(n,9) v-- ) exp( — slﬂ»)} =F.(n,¢)x,. )

The only singularity of the mixed function in Eq. (66) in the left-half plane is a simple pole at 1 = —A.
This singularity can be removed by requiring the residue to be zero, so we obtain

_ pk U npk exp(—siA) [ [ npk exp(—siA)
F.(n, &) Ma+m)  [F(n,&) Fi(49) A2 +n)F(2,8)

The right-hand side of Eq. (67) is analytic for Re(n) > —1/p? — &%, and the left-hand side is analytic for
Re(n) < \/pt — &*. Hence, by analytic continuation, each side of Eq. (67) represents the same entire

} —F.0)T, (67)

function E(1, £, s). According to Liouville’s theorem, a bounded entire function is a constant. In this case,
E(n,¢&,s) is bounded in the finite plane and E(1, £,s) — 0 as || — oo. Thus, E(y,¢,s) = 0, and we have
npk exp(—sil)

2 = A+ nF (2, OF (n,&)’ (68)

_mexp(=slA) [, F.(,&)
U-= AMA+7) [1 F+(/l,£)]'

(69)

4. The stress-intensity factor history

When the normal stress on the crack plane z = 0 has been obtained, we now come to the determination
of the dynamic stress-intensity factor for the fundamental problem. The stress-intensity factor in the La-
place transform domain can be expressed as

K, (¢,5) = lim [(2mx) %6 (x, &, 9)]. (70)

x—0+

From the Abel theorem concerning asymptotic properties of transforms and by virtue of Eq. (44), we get

Ky (&)= lim [(2sm)' " 2.(Em.5)57") (7)
Eq. (68) is substituted into Eq. (71) to give
—F 2 pk exp(—siA)
= _—_— 2
KI (67‘9) \/; );F+();7 é) (7 )
The inverse two-sided Laplace transform of Eq. (72) is
~F 2 s (%7 mpkexp { — s[IA(¢) — &)}
K, (y,s) = \/:— = d¢, 73
O Sy T ORI, 73

where y > 0 is assumed for the time being and o, is any real number between —p; and +p,. Here, the inverse
transform is carried out through the use of the Cagniard-de Hoop technique. Cagniard contours are in-
troduced by setting /A(¢) — &y = ¢, which can be solved for ¢ to yield

yt il
Ci = —mim\/ﬂ -y + ). (74)

In the ¢ plane, Eq. (74) describes a hyperbola which is denoted as I'.. When ¢ = ¢y = pv/)* + 2, the
imaginary part of £, vanishes and the vertex of the hyperbola I'. is defined by
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£ —plane
P RC P:V
-—ao
Fig. 2. The integration contour.
mvy
Ep = — ———. (75)

/y2 + 12
Now, we shift the ¢ integration to the hyperbola paths I'.. The I', and I'_, together with the inversion
path of £ and two arcs of indefinitely large radius, form a closed contour as shown in Fig. 2. When |&| < p,
the integrand of Eq. (73) is analytic inside and on this contour. Choose the appropriate branch of A(¢) such
that A(0) = pyv. Then, according to Cauchy’s integral theorem and Jordan’s lemma, we obtain

~F
K, (v,5) = Tcpk\/i Im / e"p ) ag dr. (76)
to é+ ) é#»}
From the convolution theorem for Laplace transform, we have
2 G(y,1,v)
) = ——=—"dr, 77
(00) = ok \/;Gt W Vi—T )
where
1 0¢y }
G(y,t,v) =Im< - — 7, 78
s =t e o %)

and here the variable ¢ in £, should be replaced by t.
When |&y| > pi, an additional integration path from —p; to —|&,|, which embraces the branch cut of
MEE,[A(E), €], must be considered. In this case, Eq. (73) becomes

~F 2s o exp(—st) 6@ /li‘) exp{ —s[IA(&) + &y} }
K = npky/—=<1 df —Im dé, ».
1025) =mp \/ { m/ TR ey &l o T TEEnaa
(79)
Let /A(¢) + &y =1, in which & is in the range p; <&, <|&|. Then, we have ty <7<, where

ty = p1y + 1\/p3v? —p%, and &, may be found to be

yT
b= AR ) - (80)

The stress-intensity factor in the time domain can be obtained as follows:
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Kf(y,t)=pk\ﬁ9[ totwdf— ’ Gl(y’f’v)df} (81)

7ot Vi—t & ﬁ
with
B 1 0¢,
Gi(y,T,v) = Im{ MENFL[A(E), & E} N

Combining Eqgs. (77) and (81), the dynamic stress-intensity factor for the fundamental problem may be
expressed in the form

F B 20 "Gy,T,v) Gy, 1,0) P 2)}
Ki(y,t) = pk\/;at [ Vi dz i dtH (vy ” VI (83)

With the fundamental solution and Lamb’s solution at hand, it is now possible to construct the stress-
intensity factor history for the case of impact point loading on the crack faces at x = -/, y=z=0. As
described in the Section 2, this solution can be superimposed by two solutions, one is Lamb’s problem with
a concentrated force at x = —I, y =z = 0, the other problem is that which cancels out the surface dis-
placement for z = 0, x = 0 of Lamb’s problem. It is clear that the normal stress in Lamb’s problem is not
singular at x = 0, z = 0, so that the stress-intensity factor is determined by problem 2 only. From Egs. (8)—
(10), (26), (27) and (83), it is found that the stress-intensity factor is given by

o0

K ) = ——— KF v o)dv
1, 1) m2p o/ 1 (O 1,0)f(v)
\/sz > arl rt G(y T 1)) 1 G, (y . U) pl )
— _ - M0 dr — M 0 dtH P~ ER) do. 84
A e R = L O | ICC

Taking into account that #; <#, <1, we finally obtain

V2KkF o " "Gy, T,0) G (y,T,0) D ]
Ky, ) = — Y- = ASARA RPN P L R ) Py dvo, (85
1, 1) 5 /pl/p2 Vel v el (vy o, VIt )_f(v) v, (89)

where

. t

- PR+ 2
Although Eq. (85) is derived with the limitation y > 0, it can be easily extended to the full range

—00 < y < oo by analytic continuation.

Vo

(86)

5. Results and discussions

We now discuss the properties of the dynamic stress-intensity factor history (85). It is observed that the
first term represents the influence induced by the incident wave. The second term is due to the incident
secondary wave produced by the first waves interacting with crack edge. The function f'(v) has a simple pole
at ¢/p>, and an immediate inference is that when the Rayleigh wave arrives, the stress-intensity factor is
singular at this instant. Thereafter, f(v) decays gradually as # — oo and the dynamic stress-intensity factor
approaches the value of static solution.

To make the physical meaning much clear, a numerical calculation of Eq. (85) is carried out for Pois-
son’s material which is isotropic and for Beryl which is transversely isotropic.

Poisson’s material: ay = a, = 3as, a3 =2as, as=as, c¢=1.088/,/as.
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Fig. 3. The dynamic stress-intensity factor history Ki(y,?).

Beryl: a; = 4.12484as, a, = 3.61802as, a3 =2.01199as, a4 =1.17363as, c = 1.04645/,/as.

Results for y = [ are shown in Fig. 3, with the dashed line for Poisson’s material and the solid line for
Beryl. In the figure, SIF = K, (y, 7)((n!)*?)/(V2F).

It is shown in Fig. 3 that before the arrival of the dilatational wave, the medium is completely at rest and
the stress-intensity factor is zero. Upon sudden application of the normal point loads on the faces of the
crack, the initial response is compressive and the crack faces tend to move towards each other. This is
reflected by the stress-intensity factor being negative initially. This effect persists until the arrival of the
Rayleigh wave at = (1> +y?)"/? . ¢!, The stress-intensity factor is of the singularity (v, — c¢/p,)”" at this
instant. Thereafter, the transient stress-intensity factor decays gradually towards its equilibrium stress in-
tensity factor which was obtained by Fabrikant et al. (1993).

This completes the analysis of a half plane crack in a transversely isotropic solid under the action of a
pair of suddenly-applied normal point loads on the crack faces at a finite distance / away from the crack
edge. An exact expression is derived for the mode I stress-intensity factor as function of time for any point
along the crack edge. Unfortunately, the present approach is not valid to more general cases of anisotropy
because Lamb’s solution at this case cannot be expressed in the form of Eq. (10) and the usage of the
Wiener—Hopf technique is then inhibited.
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